STM:基因编辑和溶瘤病毒合力抗击黑色素瘤脑转移

尽管如今全球医疗水平已取得长足进展,晚期黑色素瘤(advanced melanoma)仍旧预后不良,生存率极为有限,且脑转移基本上是半数黑色素瘤相关死亡的主要原因【1】。晚期黑色素瘤脑转移概率高达百分之六十【2,3】。虽然综合治疗(multidisciplinary therapies),比如放疗、靶向治疗以及手术都是干预黑色素瘤脑转移的可行性方式,但总体生存时长只有四到六个月【4】。免疫疗法的出现,尤其是免疫检查点抑制剂,对黑色素瘤患者具有重大意义【5】。当然,临床实验显示,系统注射免疫检查点抑制剂后,颅内响应(intracranial responses)要远逊于颅外反应,究其原因,很可能是作为免疫检查点抑制剂的抗体进入大脑和脑脊液的水平并不高【6,7,8,9】。因此,学界亟需替代性干预药物和治疗方案。

溶瘤病毒疗法(Oncolytic virotherapy)是一类新型免疫治疗方案,原理上来说,溶瘤病毒(oncolytic viruses)可以在肿瘤细胞(neoplastic cells)中选择性复制【10】,且近期多项工作显示了其广阔的临床前景。溶瘤病毒的裂解活性可以促进肿瘤抗原的释放,从而促进抗肿瘤免疫响应的启动。T-VEC(talimogene laherparepvec)是一类重组溶瘤单纯疱疹病毒(herpes simplex virus),经美国食品与药物管理局认证可以直接注射入肿瘤病灶处,并且,一经注射就可以诱导抗肿瘤响应,但是,对于已经发生转移的IV期病患来说,这类治疗对病人整体生存率影响不大。而全身注射因为机体对病毒中和作用(neutralization)、隔离作用(sequestration)以及无效外渗作用(inefficient extravasation),效果往往也达不到预期。

近期,来自美国Harvard Medical School的Khalid Shah研究组在SCIENCE TRANSLATIONAL MEDICINE上发表题为Gene-edited and -engineered stem cell platform drives immunotherapy for brain metastatic melanomas的文章,就溶瘤病毒干预过程中产生的上述问题进行了进一步优化。

为了解决上述问题,作者之前的工作显示,装载溶瘤病毒的间充质干细胞(mesenchymal stem cells)可以进入大脑中的多处转移型病灶,并且,上述方法在小鼠黑色素瘤脑转移模型中具有一定疗效。但是,黑色素瘤脑转移病灶处的免疫抑制性肿瘤微环境会减弱抗肿瘤免疫响应的效率。

PTEN(Phosphatase and tensin homolog)缺失会导致黑色素瘤脑转移时间缩短,整体生存率降低。因此,作者首先构建了PTEN缺失的小鼠黑色素瘤脑转移模型,并且分析了此类小鼠独特的肿瘤免疫微环境,将其作为评估免疫疗法效率的新型平台。

接下来,作者构建了一套异体双干细胞(allogeneic twin stem cell)系统,含有两组靶向肿瘤的干细胞。其中一组干细胞装载了溶瘤病毒,而另一组通过CRISPR-Cas9基因编辑敲除了Nectin1的受体(N1KO),从而获得了对溶瘤病毒的耐受性,且可以释放多种免疫调节因子,包括GM-CSF(granulocyte-macrophage colony-stimulating factor)。通过小鼠黑色素瘤脑转移模型,作者发现,在肿瘤病灶处转入此种双干细胞所释放的溶瘤病毒和GM-CSF,可以活化树突状细胞和T细胞介导的免疫响应。另外,与现有基于溶瘤病毒的免疫疗法相比,作者这类效法效率更高,且在人源化小鼠模型中也具有一定疗效。

综上所述,作者的工作建立了一套基于异体干细胞的免疫疗法,这类疗法对黑色素瘤脑转移具有一定的疗效,具有广阔的临床前景。


文章来源

https://doi.org/10.1126/scitranslmed.ade8732


参考文献

1. M. C. Chamberlain, Brain metastases: A medical neuro-oncology perspective. Expert Rev. Neurother. 10, 563–573 (2010).

2. J. Zakrzewski, L. N. Geraghty, A. E. Rose, P. J. Christos, M. Mazumdar, D. Polsky, R. Shapiro, R. Berman, F. Darvishian, E. Hernando, A. Pavlick, I. Osman, Clinical variables and primary tumor characteristics predictive of the development of melanoma brain metastases and post-brain metastases survival. Cancer 117, 1711–1720 (2011).

3. A. Y. Bedikian, C. Wei, M. Detry, K. B. Kim, N. E. Papadopoulos, W. J. Hwu, J. Homsi, M. Davies, S. McIntyre, P. Hwu, Predictive factors for the development of brain metastasis in advanced unresectable metastatic melanoma. Am. J. Clin. Oncol. 34, 603–610 (2011).

4. D. G. Coit, J. A. Thompson, M. R. Albertini, C. Barker, W. E. Carson, C. Contreras, G. A. Daniels, D. DiMaio, R. C. Fields, M. D. Fleming, M. Freeman, A. Galan, B. Gastman, V. Guild, D. Johnson, R. W. Joseph, J. R. Lange, S. Nath, A. J. Olszanski, P. Ott, A. P. Gupta, M. I. Ross, A. K. Salama, J. Skitzki, J. Sosman, S. M. Swetter, K. K. Tanabe, E. Wuthrick, N. R. McMillian, A. M. Engh, Cutaneous melanoma, version 2.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 17, 367–402 (2019).

5.  J. R. Brahmer, S. S. Tykodi, L. Q. Chow, W. J. Hwu, S. L. Topalian, P. Hwu, C. G. Drake, L. H. Camacho, J. Kauh, K. Odunsi, H. C. Pitot, O. Hamid, S. Bhatia, R. Martins, K. Eaton, S. Chen, T. M. Salay, S. Alaparthy, J. F. Grosso, A. J. Korman, S. M. Parker, S. Agrawal, S. M. Goldberg, D. M. Pardoll, A. Gupta, J. M. Wigginton, Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

6. G. Gampa, S. Vaidhyanathan, J. N. Sarkaria, W. F. Elmquist, Drug delivery to melanoma brain metastases: Can current challenges lead to new opportunities? Pharmacol. Res. 123, 10–25 (2017).

7. N. M. Rochet, R. S. Dronca, L. A. Kottschade, R. N. Chavan, B. Gorman, J. R. Gilbertson, S. N. Markovic, Melanoma brain metastases and vemurafenib: Need for further investi- gation. Mayo Clin. Proc. 87, 976–981 (2012).

8. D. Pluim, W. Ros, M. T. J. van Bussel, D. Brandsma, J. H. Beijnen, J. H. M. Schellens, Enzyme linked immunosorbent assay for the quantification of nivolumab and pembrolizumab in human serum and cerebrospinal fluid. J. Pharm. Biomed. Anal. 164, 128–134 (2019).

9. R.Kim,B.Keam,S.Kim,M.Kim,S.H.Kim,J.W.Kim,Y.J.Kim,T.M.Kim,Y.K.Jeon,D.W.Kim, D. H. Chung, J. S. Lee, D. S. Heo, Differences in tumor microenvironments between primary lung tumors and brain metastases in lung cancer patients: Therapeutic implications for immune checkpoint inhibitors. BMC Cancer 19, 19 (2019).

10. M. Aghi, R. L. Martuza, Oncolytic viral therapies—The clinical experience. Oncogene 24, 7802–7816 (2005).

版权声明:本站所有资讯内容,如无特殊说明或标注,均来源互联网。如若本站内容侵犯了原著者的合法权益,可联系本站删除。
免责声明:本文旨在传递生物医药最新讯息,不代表生物之家网站立场,不构成任何投资意见和建议。本文也不是治疗方案推荐,如需获得治疗方案指导,请前往正规医院就诊。

本文链接:http://swzj.com/genetic/1318.html