漫漫冬日如此难熬,不如趁机把自己冻成“冰块”。
许多科幻小说和电影中,都有将人体冷冻起来,到未来再解冻复苏的情节。然而,我们的科学技术尚未达到这种水平,目前能在冷冻条件下保存的只有单细胞(如胚胎细胞、卵细胞、精子等),而且需要冷冻在特殊试剂中。至于稍复杂的器官,则只能在低温条件(通常为4°C)下短期保存,如心脏能保存约4~6小时、肝脏约8~12小时、肾脏约24~30小时。
可偏偏就有这样一种生物,冬天会冻成“冰块”,春天又能融化苏醒。
它就是木蛙(Rana sylvatica),这是一种在北美广泛分布的蛙类,也是唯一一种能在北极圈内生存的两栖动物。
冷冻状态下,木蛙的心脏会停止跳动,大脑也会暂时歇业。极端情况下,木蛙最低能耐受-18°C的严寒,即便是冷冻7个月之久,气温升高后还依然能够正常复苏,活蹦乱跳、毫发无损。
△正常状态和冰冻下的木蛙(左),以及它们的分布范围(右)
机体冷冻后无损解冻之所以困难,是因为冷冻和解冻过程会造成不可逆的损伤。
例如,在细胞外基质结冰的过程中,由于细胞外基质的水分结成了冰晶,溶质析出,所以细胞外基质的渗透压会逐渐升高,造成细胞内的水分转移到细胞外,使细胞脱水、体积减小;这些冰晶还会破坏细胞膜,以及细胞内的细胞器和细胞骨架。
另外,血液凝固导致的局部缺血还会使组织缺氧坏死;而解冻过程又会促进活性氧(ROS)的产生,进一步损伤细胞。
△细胞外液结冰对细胞的影响
所以,在漫漫冬季,木蛙是如何避免这些损伤的呢?
冰冻的木蛙
1994年,研究人员利用核磁共振对冷冻和解冻过程中的木蛙进行成像,发现木蛙身体结冰和解冻的过程都很缓慢。
结冰过程从身体边缘的肢体部位开始,以特定方向逐渐蔓延至身体内部。冷冻开始的2小时后(下图左D),木蛙的心脏已经结冰,停止了跳动,但肝脏却依然保持着未冻结的状态,不过体积大大减小。慢慢地,木蛙的肝脏也开始结冰,最终全身冻成冰块,整个过程持续4个多小时。
而解冻则是个完全相反的过程。
当外界温度恢复到0°C以上,首先解冻的是木蛙的内脏,再向全身各方向蔓延开去。到52分钟(下图右C)时,木蛙的肝脏已经完全解冻,成为最先解冻的器官,不过肝脏的体积并没能恢复到原始状态。慢慢地,木蛙四肢的肌肉组织也开始解冻。3个小时过去后,木蛙的心脏才完全恢复,血液再次灌注到血管和肝脏之中。
△冷冻(左)和解冻(右)过程中的木蛙,黑色部位(i)表示结冰,“h”指示心脏,“l”指示肝脏
可见,肝脏在木蛙的耐冻特性中有着重要作用。科学家们发现,在夏季和秋季,木蛙会在肝脏中储备大量的肝糖原。到了冬季,当温度降低,它们的肝脏会开始快速分解肝糖原,产生大量葡萄糖。同时,木蛙的心率会快速上升,在结冰过程开始的1分钟内,木蛙的心率直接会翻一番,这有助于葡萄糖快速地分布到全身。
对于细胞来说,葡萄糖是一种很好的冷冻保护剂。而为了快速吸收血液中大量的葡萄糖,木蛙的细胞从秋季开始,就会大量表达葡萄糖转运蛋白,并一直维持到冬季。这样当冬季来临,这些细胞就会高效地将葡萄糖转运至细胞内,避免细胞内部结冰。由于不同器官和组织对葡萄糖的摄取能力不同,最终,木蛙的大脑和腹部核心器官会获得更多葡萄糖,而骨骼肌和皮肤等外周组织中的葡萄糖浓度则相对较低。
与夏季的木蛙相比,秋冬季木蛙血浆和组织中的葡萄糖水平升高了50~80倍。要知道,正常人的空腹血糖水平低于5.0mmol/L,而木蛙在冬季的血糖水平可以高于200mmol/L,是名副其实的“高血糖患者”。
除葡萄糖外,木蛙还会累积其他的抗冻分子,例如,从夏季到冬季,木蛙体内的尿素水平升高了10倍。这些分子和葡萄糖被细胞吸收后,会一起增加细胞内的渗透压,在避免胞内结冰的同时,减少水分流失。
可是,除了细胞之外,木蛙身体的其他部分都会冻结,其体内65%~70%的水分都会结冰,仅仅避免细胞内不结冰还远远不够,还得让细胞外的冰晶不对细胞造成损伤。而木蛙采取了两种方式来应对这一难题。
首先,木蛙会表达专门的冷冻响应蛋白(Fr10),这种蛋白会在寒冷和细胞脱水、缺氧时高表达。这是一种冰结合蛋白,它能到达细胞外并和冰晶结合,最大限度地避免小冰晶再次结晶形成大冰晶,从而降低冰晶生长对细胞和组织造成的伤害。其次,木蛙还会在冬季改变细胞膜的组成成分,增加细胞膜的流动性,维持细胞膜的稳定。
不只是抗冻
由于冻结状态下的木蛙会停止呼吸,机体内的氧气会很快耗尽,细胞产生的能量会大大减少。所以,木蛙必须要在冬季数个月的时间内,将机体维持在低耗能的状态,诸如蛋白质合成、细胞分裂等细胞活动都需要维持在最低限度,同时还要维持生存必要的活动,例如抗氧化、抗细胞凋亡、基础的免疫功能等。
为了抑制机体的代谢,木蛙一方面会以表观遗传学的方式,通过DNA修饰和转录因子的调节,下调某些基因的表达。例如,由于氧气缺失,细胞只能以无氧呼吸方式供能,木蛙就会下调线粒体相关基因(参与有氧呼吸)的表达,这同时能减少对细胞有害的活性氧的产生。
另一方面,木蛙还会表达特定的microRNA,在一些基因正常转录后,限制并大大减少后续蛋白质的合成。这些用于调控的microRNA会在冷冻时显著增加,而解冻时显著减少,蛋白质的合成就会快速恢复,这样木蛙能在冷冻/解冻两种状态之间的实现切换。对于合成出来的蛋白质,木蛙也会通过翻译后修饰(PTM)稳定或增加它们的活性,让它们在代谢抑制的状态下能正常工作。
同样地,也是利用这些方式,木蛙上调了凝血和抗氧化应激相关基因的表达,以及相关蛋白的稳定性与活性。这样,即便机体内不幸出现的大冰晶造成了组织损伤和出血,木蛙也能迅速修复这些伤害。并且在春天到来、体内的冰晶融化时,尽量减少氧化应激带来的危害。
可是,停止呼吸带来的问题远不止能量供应受限。你也许知道,长时间剧烈运动,肌肉细胞的无氧呼吸会累积大量乳酸,严重时甚至会造成乳酸酸中毒。木蛙面临的是每年好几个月的无氧呼吸。因此,木蛙会调整部分组织中的代谢通路。在无氧呼吸中,乳酸主要由丙酮酸转化形成。木蛙通过将丙酮酸更多地用于合成丙氨酸,减少了乳酸的累积,最大限度地避免组织中的乳酸酸中毒。
科幻小说或许能成真
极寒地带生活着许多动物,木蛙是其中少见的、以冷冻机体的方式过冬的生物,其他生物通常会避免体内结冰。一般来说,动物们会运用两种策略:一是产生抗冻蛋白或如甘油类的冷冻保护剂,以维持机体内水分的过冷状态,例如陆生节肢动物通常会以这种方式应对寒冷;二是让机体低温脱水,例如水熊虫一类的缓步动物采取的就是这种方式。
△水熊虫
科学家们也一直在从这些生物的抗冻机制中汲取灵感。例如,他们已经能利用葡萄糖的类似物,把大鼠肝脏的冷冻保存时间延长到96小时;通过一些小分子来抑制细胞的代谢,使得冷冻又复苏的细胞的活力得以保持,DNA损伤也大大减少。这些工作不仅能给那些想冷冻身体看看未来世界的人们带来希望,还会极大地推动再生医学和器官移植等学科的发展。
随着全球气候的变暖,木蛙原本用来度过冬季的机制或许会在未来的某一天成为历史。至于在无法靠冰冻自己度日的冬天里,它们能否找到充足的食物,又会以怎样的方式去应对新的气候挑战,就有待更多科学家们的研究了。
参考资料:
[1] https://linkinghub.elsevier.com/retrieve/pii/S1096495922000355
[2] https://journals.biologists.com/jeb/article/217/12/2193/12112/Wood-frog-adaptations-to-overwintering-in-Alaska
[3] https://journals.physiology.org/doi/full/10.1152/physrev.00016.2016
[4] https://journals.physiology.org/doi/abs/10.1152/ajpregu.1994.266.6.r1771
[5] https://www.nationalgeographic.com/animals/article/animals-freeze-then-thaw-explained